Albomycin uptake via a ferric hydroxamate transport system of Streptococcus pneumoniae R6.
نویسندگان
چکیده
The antibiotic albomycin is highly effective against Streptococcus pneumoniae, with an MIC of 10 ng/ml. The reason for the high efficacy was studied by measuring the uptake of albomycin into S. pneumoniae. Albomycin was transported via the system that transports the ferric hydroxamates ferrichrome and ferrioxamine B. These two ferric hydroxamates antagonized the growth inhibition by albomycin and salmycin. Cross-inhibition of the structurally different ferric hydroxamates to both antibiotics can be explained by the similar iron coordination centers of the four compounds. [(55)Fe(3+)]ferrichrome and [(55)Fe(3+)]ferrioxamine B were taken up by the same transport system into S. pneumoniae. Mutants in the adjacent fhuD, fhuB, and fhuG genes were transport inactive and resistant to the antibiotics. Albomycin, ferrichrome, ferrioxamine B, and salmycin bound to the isolated FhuD protein and prevented degradation by proteinase K. The fhu locus consisting of the fhuD, fhuB, fhuG, and fhuC genes determines a predicted ABC transporter composed of the FhuD binding lipoprotein, the FhuB and FhuG transport proteins, and the FhuC ATPase. It is concluded that active transport of albomycin mediates the high antibiotic efficacy in S. pneumoniae.
منابع مشابه
Ferrichrome transport in Escherichia coli K-12: altered substrate specificity of mutated periplasmic FhuD and interaction of FhuD with the integral membrane protein FhuB.
FhuD is the periplasmic binding protein of the ferric hydroxamate transport system of Escherichia coli. FhuD was isolated and purified as a His-tag-labeled derivative on a Ni-chelate resin. The dissociation constants for ferric hydroxamates were estimated from the concentration-dependent decrease in the intrinsic fluorescence intensity of His-tag-FhuD and were found to be 0.4 microM for ferric ...
متن کاملUptake and Conversion of the Antibiotic
The antibiotic albomycin is transported into cells of Escherichia coli K-12 by the same uptake system as the iron-supplying ferrichrome complex. The iron-complexing hydroxamate moieties of albomycin and ferrichrome are structurally similar. During the phase of rapid iron uptake the ‘chelators were not found in the cells. In order to understand the antibiotic activity of albomycin, it was labele...
متن کاملStructures of Streptococcus pneumoniae PiaA and Its Complex with Ferrichrome Reveal Insights into the Substrate Binding and Release of High Affinity Iron Transporters
Iron scarcity is one of the nutrition limitations that the Gram-positive infectious pathogens Streptococcus pneumoniae encounter in the human host. To guarantee sufficient iron supply, the ATP binding cassette (ABC) transporter Pia is employed to uptake iron chelated by hydroxamate siderophore, via the membrane-anchored substrate-binding protein PiaA. The high affinity towards ferrichrome enabl...
متن کاملActive transport of an antibiotic rifamycin derivative by the outer-membrane protein FhuA.
BACKGROUND FhuA, an integral membrane protein of Escherichia coli, actively transports ferrichrome and the structurally related antibiotic albomycin across the outer membrane. The transport is coupled to the proton motive force, which energizes FhuA through the inner-membrane protein TonB. FhuA also transports the semisynthetic rifamycin derivative CGP 4832, although the chemical structure of t...
متن کاملCrystal structure of the antibiotic albomycin in complex with the outer membrane transporter FhuA.
One alternative method for drug delivery involves the use of siderophore-antibiotic conjugates. These compounds represent a specific means by which potent antimicrobial agents, covalently linked to iron-chelating siderophores, can be actively transported across the outer membrane of gram-negative bacteria. These "Trojan Horse" antibiotics may prove useful as an efficient means to combat multi-d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 188 11 شماره
صفحات -
تاریخ انتشار 2006